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Globally linked vortex clusters in trapped wave fields
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We put forward the existence of a rich variety of fully stationary vortex structures, termedH clusters, made
of an increasing number of vortices nested in paraxial wave fields confined by trapping potentials. However,
we show that the constituent vortices areglobally linked, rather than products of independent vortices. Also,
they always feature amonopolarglobal wave front and exist in nonlinear systems, such as the Bose-Einstein
condensates. Clusters with multipolar global wave fronts are nonstationary or, at best, flipping.
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Singular wave structures, which contain topological wa
front dislocations@1#, are ubiquitous in many branches
classical and quantum science. Screw dislocations, or v
ces, are a common dislocation type. Wave packets w
nested vortices find applications in fields as diverse as
mology, biosciences or solid state physics@2–5#. As striking
examples, they are at the heart of schemes to generate
neered quNits in quantum information systems in high
dimensional Hilbert spaces@6,7#, are believed to be essenti
for the onset of superfluidity in Bose-Einstein condensa
~BECs! @8–11#, or allow tracking the motion of a single
atom @12#.

A recent study of the motion of vortex lines governed
both linear and nonlinear Scro¨dinger equations describin
the dynamics of atoms in harmonic traps revealed that
topological features of vortex dynamics are, to a large ext
universal@13#. The dynamics of the vortices nested on loc
ized wave packets depends on the evolution of the h
beam, and on the interferences and interactions between
vortices@14#. Multiple vortices nested on the same host ty
cally follow dynamical evolutions that might include larg
vortex drifts that destroy their initial arrangement, a
vortex-pair annihilations that destroy the vortices the
selves. Vortex evolutions are particularly complex in stron
nonlinear media, such as the BECs, where the vortices
interact with each other. Therefore, a fundamental ques
arises about whether stationary or quasistationary vo
clusters or lattices@15# made of vortices with equal and wit
opposite topological charges exist. To isolate the pure vo
features from the dynamics solely induced by the evolut
of the host wave packet, it is convenient to study wave fie
confined by suitable potentials, as in weakly interact
trapped BECs.

In this paper we show that vortex clusters with multipo
global wave fronts nested in wave fields confined by trapp
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potentials are nonstationary, when the number of vorti
and their location are not constant during dynamical evo
tion, or at best flipping, when the vortices periodically fl
their topological charges through extremely sharp Berry
jectories @16#. In the former case, multiple vortex reviva
mediated by Freund stationary point bundles@17#, which
carry the necessary Poincare´-Hopf indices@18#, can occur. In
contrast, we find that a rich variety offully stationaryvortex
clusters made of an increasing number of vortices do ex
The important point we put forward is that these clusters
globally linked, rather than products of independent vortice
Also, they feature amonopolarglobal wave front. We also
show that the clusters exist, and are robust in nonlinear
tems such as the interacting BECs.

We thus address the slowly varying evolution of gene
wave functions governed by the paraxial wave equation

iAz5LA1N~A!, ~1!

whereA is a complex field,L is a two-dimensional linear
differential operator containing a trapping potential, a
N(A) takes care of any nonlinear contribution. We assu
the trapping potential to be harmonic, thusL52 1

2 (]x
2

1]y
2)1(nxx

21nyy
2). To be specific, whenN(A);uAu2A,

this equation models the propagation of a light beam gui
in a Kerr nonlinear graded-index medium and the mean-fi
evolution of a two-dimensional trapped BEC at zero te
perature~wherenx,y are proportional to the trap frequencie
in appropriate units!. Here we will consider only the sym
metric case; hencenx5ny52. For convenience, from now
on we will split A(x,y;z)5F(x,y;z)V(x,y;z), taking the
host packetF as given by the fundamental mode of the tra
ping potential, F(x,y;z)5exp(2x22y2)exp(22iz). In the
linear case, the functionV(x,y;z) carries all the essentia
information about the solutions and, in particular, about v
tex dynamics. Here we will consider the evolution of pol
nomial initial data forV corresponding to~multi!vortex so-
t,
©2002 The American Physical Society12-1
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lutions of Eq.~1!. Such solutions can be expressed as fin
series and, as will be clear later, all of them must be perio
or stationary.

Let us first consider the linear@N(A)50# evolution of
vortex clusters built as products ofn independent single
charge vortices,V(x,y;z50)5)k51

n @x2xk1 isk(y2yk)#,
where (xk ,yk) are the locations in the vortex cores in th
transverse plane, andsk561. None of the above produc
vortex clusters is found to be dynamically stationary. On
contrary, the number of vortices and their location is found
vary during evolution, so that the initial vortex structure
destroyed. These results can be illustrated by examining
evolution of the four-vortex cluster,V(z50)5(x1a1 iy)
3(x2a1 iy)(x2 iy2 ia)(x2 iy1 ia), which contains two
vortices with positive topological charge and two vortic
with negative charge in a symmetrical geometry. This clus
features a quadrupolar global wave front, as is revealed
calculating the gradient of the wave frontF far from the
cluster core, to obtainu“Fu;1/r3, where r is the polar
coordinate, similar to the corresponding electrostatic mu
pole @19#. Substitution into Eq.~1! yields

V~x,y;z!5@~x21y2!~x21y212e4iz22!#e28iz

14ia2xye24iz1
1

2
~12e24iz!22a4. ~2!

One finds three different regimes of evolution, as shown
Fig. 1: vortex drifts, vortex-pair annihilations, and reviva
take place, so that depending on the value of the geomet
parametera, the total number of vortices,n, hosted in the
wave field during propagation can oscillate between~i! 4 and
8 @see Fig. 1~a!#; ~ii ! 4, 0, and 8@see Fig. 1~b!#; and ~iii ! 4
and 0 @see Fig. 1~c!#. When n50, it is understood that al
vortices have annihilated each other. Analogous evoluti
were found for octupoles and higher-order multipoles. O
dipoles can be made quasistationary, but are made flip
when the corresponding vortex twins periodically flip the
topological charges. Thus, the main conclusion reache

FIG. 1. Evolution of a vortex quadrupole, constructed as
product of four single-charge vortices. Upper row shows numbe
vortices ~n! as a function ofz for different values of the initial
quadrupole size.~a! a50.5, ~b! a51.1, and~c! a51.2. Bottom
row shows intensity snapshots corresponding to points labeledA, B,
andC in ~c!. Black-filled circles represent positive vortices; whit
filled circles represent negative vortices.
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that the interference between the constituent vortices of
the product clusters produces beatings between the no
modes of the system, rendering the clusters nonstationa

The key insight we put forward in this paper is that su
beatings are not associated to the intrinsic or local proper
of the individual vortices, but to the very way the vortice
areglobally linkedin the host wave packet. As an examp
let us consider the evolution of

V~x,y;z50!5x21y22a212ixy, ~3!

which contains four vortices located at the same positi
and having the same charges as those of the vortex qua
pole considered above@see Fig. 2#. However, in this cluster
the vortices are intimately linked to each other, rather th
individually nested in the hostF. This fact manifests itself in
the global wave front of the cluster, which behaves
u“Fu;cos(2f)/r1O(1/r3), and thus features almost ever
where amonopolardecay. In this case, the vortex evolutio
is given by

V~x,y;z!5~x21y221/212ixy!e24iz11/22a2, ~4!

an evolution when the cluster is constructed witha51/A2
does become fully stationary.

The above four-vortex cluster is not an isolated case,
rather an example of whole existing families of fully statio
ary vortex structures made of globally linked vortices.
fact, the solutions of Eq.~1! with N(A)50 have the form

A~x,y;z!5 (
k,l 50

`

CklHk~xA2!Hl~yA2!e2x22y2
e22i (k1 l 11)z,

~5!

whereH j are the Hermite polynomials. Therefore, the ev
lution of initial data of the form V(x,y;z50)
5(k50

n CkHk(j)Hn2k(h) for any CkPC, where j5xA2
andh5yA2, is given by

e
f

FIG. 2. H-cluster ‘‘zoology.’’ Shown are several examples
stationary vortex matrices and vortex arrays that can be constru
~see text for details!. Lines show zero crossings of Re(V) ~full
lines! and Im(V) ~dashed!. Features are as in Fig. 1.
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V~x,y;z!5e22inz(
k50

n

CkHk~j!Hn2k~h!. ~6!

On physical grounds, this simple mathematical result sho
that all the stationary clusters are made of globally link
vortices. Equation~6! allows us to build a variety of struc
tures, to be termed Hermite, orH clusters, whose key fea
tures are discussed in what follows.

Perhaps the simplest types ofH clusters are those with
n3n matrix geometry, thus containingn2 vortices. These
clusters can be generated by using as initial data, for
ample, Vn3n(x,y;z50)5Hn(j)1 iH n(h). In this function
the vortex charges alternate throughout the matrix and
vortex locations are dictated by the zeros of the particu
Hermite polynomials involved. In general, these vortex m
trices are not regular, the distance between vortices va
along the matrix. However, in the particular cases withn
52 andn53, the matrix is regular. Then53 case is shown
in Fig. 2~a!. Notice that a 232 matrix cluster can be
generated either withV(x,y;z50)5H2(j)1 iH 2(h) or
with V(x,y;z50)5H2(j)1H2(h)1 iH 1(j)H1(h). Actu-
ally, this latter possibility generates the stationary four-vor
cluster discussed earlier@see Fig. 2~b!#.

One can also buildm3n(mÞn) stationary vortex matri-
ces. A possible choice for the vortex function generat
such a vortex matrix is Vm3n(x,y;z50)5Hm(j)
1 iH um2nu(j)Hn(h). We show the 432 vortex matrix as an
example in Fig. 2~c!. In contrast to then3n matrices, in the
general case the topological charges carried by the vort
of the m3n matrices do not alternate sign throughout t
matrix. An important subclass of them3n vortex matrices
are them31 cases, to be termed asvortex arrays. They
consist inm collinearly displaced vortices of the same top
logical charge. Figures 2~d! and 2~e! show illustrative ex-
amples. The simplest array is the vortex twin shown in F
2~d!. A pair of identical vortices that, contrary to the vorte
dipole that either undergoes periodic annihilations and re
als or charge flip-flops, can be made fully stationary.

The n3n matrices are either chargeless for evenn, or
carry a single net charge for odd values ofn, while the m
31 arrays carry a total topological charge ofm. In any case,
the wave front of all theH clusters is foundto feature a
monopolardecay (;1/r) almost everywhere.

More complexH clusters also exist, and a full classific
tion of all the possibilities falls beyond the scope of th
paper. However, an example of one of such exoticH clusters
is displayed in Fig. 2~f! that corresponds to the cluster bu
with V(x,y;z50)5H3(h)1 i @H3(j)1H1(h)H2(j)#. A
rich variety of possibilities contained in Eq.~6! is clearly
apparent.

An interesting issue is the existence and stability of vor
clusters in the presence of nonlinear cubic interactions, s
as those appearing in the propagation of beams in Kerr
dia or in the dynamics of BECs. To ease the comparison w
BEC literature, we choose nownx5ny51/2 and N(A)
5UuAu2A ~Ref. @20#!. In this context, the evolution variabl
is denoted byt instead ofz. With this choice of parameters
the range ofU values experimentally accessible for the tw
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dimensional case is 0,U,102–103 ~Ref. @21#!.
We have studied several particular examples to verify t

these structures indeed exist and are stable in the nonli
regime. We have taken as initial data several linear confi
rations, such as a single vortex, dipole systems, and the f
vortex cluster given by Eq.~3!, and evolved them forUN
510 (N5* uAu2dx is the wave function norm! using a stan-
dard split-step integrator. It is found that although the ba
ground performs oscillations and the vortex locations os
late around their equilibrium positions, the vortex cluste
remain stable~see Fig. 3!. We have also searched for statio
ary solutions of Eq.~1!, of the formA(x,y;t)5eiltc(x,y).
To do so we have used a steepest descent method to m
mize the functional@22#

F~c!5

E c* ~2D2l1r 21Uucu2!cdx

E ucu2dx
, ~7!

whose minima~except forc50) coincide with the station-
ary solutions of Eq.~1! for a given value ofl. For instance,

FIG. 3. Stable evolution of initial data given by Eq.~3! for
UN510. Upper row shows intensity plots; bottom row shows
terference fringes. Spatial region spanned is@24,4#3@24,4#.

FIG. 4. Linear four-vortex cluster@Eq. ~3!# vs its nonlinear sta-
tionary version forU5100, l58. ~a! Plots ofuc(x,y50)u2 for the
linear ~dashed line! and nonlinear~solid line! cases.~b,c! Surface
plots of uc(x,y)u2 for ~b! the linear and~c! nonlinear situations. The
vortex locations and topological charges are indicated by plus
minus signs.
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taking the linear four-vortex cluster as initial data for t
minimization process and settingl58.0 andU5100, we
found a stationary four-vortex cluster solution~see Fig. 4!
with norm N5* ucu2dx.1.6005 ~thus the productUN
.160 which lies into the fully nonlinear regime!. We have
verified that this solution is robust under time evoluti
when small perturbations are added. These evidences s
that the existence ofH clusters in a BEC should be exper
mentally accessible, at least from the dynamical point
view.

To conclude, we stress that the constituent vortices of
H cluster areglobally linked, rather than products of inde
pendent vortices. Following this idea, it is possible to gen
ate a variety of additional novel structures with fascinat
properties. A good example is the circular vortex neckla
generated at the intersection between the circlex21y22a2

50, where Re(V)50, and the linesy6tan(2kp/n)x50,
kPN, where Im(V)50. Those are quasistationary, pure
flipping clusters made ofn vortices~see Fig. 5!, a feature so
far only known to occur with vortex dipoles. Once again, t
vortices forming the necklace are intimately linked and
not exhibit an-polar wave front. The exploitation of suc
intrinsic linking might open new opportunities in classic
et
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and quantum systems based on topological light and ma
waves. The major challenge is the demonstration of the g
eration of the clusters by suitable computer-generated h
grams @23# in optics and phase-imprinting techniques
BECs @24#.
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FIG. 5. Evolution of a flippingn58 circular vortex necklace.
Vortex patterns at~a! z50 and~b! z53p/16.
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