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Globally linked vortex clusters in trapped wave fields
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We put forward the existence of a rich variety of fully stationary vortex structures, teffhwdasters, made
of an increasing number of vortices nested in paraxial wave fields confined by trapping potentials. However,
we show that the constituent vortices a@lebally linked rather than products of independent vortices. Also,
they always feature monopolarglobal wave front and exist in nonlinear systems, such as the Bose-Einstein
condensates. Clusters with multipolar global wave fronts are nonstationary or, at best, flipping.
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Singular wave structures, which contain topological wavepotentials are nonstationary, when the number of vortices
front dislocations[1], are ubiquitous in many branches of and their location are not constant during dynamical evolu-
classical and quantum science. Screw dislocations, or vorttion, or at best flipping, when the vortices periodically flip
ces, are a common dislocation type. Wave packets witftheir topological charges through extremely sharp Berry tra-
nested vortices find applications in fields as diverse as codectories[16]. In the former case, multiple vortex revivals
mology, biosciences or solid state physigs-5]. As striking ~ Mediated by Freund stationary point bundlé], which
examples, they are at the heart of schemes to generate en§!Ty the necessary Poincéfiepf indices[18], can occur. In
neered quNits in quantum information systems in highercontrast, we find that a rich variety aflly stationaryvortex
dimensional Hilbert spacds, 7], are believed to be essential Clusters made of an increasing number of vortices do exist.
for the onset of superfluidity in Bose-Einstein condensated he important point we put forward is that these clusters are
(BECs [8-11], or allow tracking the motion of a single 9lobally linked rather than products of independent vortices.
atom[12]. Also, they feature anonopolarglobal wave front. We also

A recent study of the motion of vortex lines governed byshow that the clus_ters eX|_st, and are robust in nonlinear sys-
both linear and nonlinear Salimger equations describing €MS such as the interacting BECs.. _ .
the dynamics of atoms in harmonic traps revealed that the We thus address the slowly varying evolution of generic
topological features of vortex dynamics are, to a large extentvave functions governed by the paraxial wave equation
universal[13]. The dynamics of the vortices nested on local-
ized wave packets depends on the evolution of the host i
beam, and on the interferences and interactions between the IA,=LA+NMA), @)
vortices[14]. Multiple vortices nested on the same host typi-
cally follow dynamical evolutions that might include large . ) . ) ) )
vortex drifts that destroy their initial arrangement, andWhereA is a complex field,C is a two-dimensional linear
vortex-pair annihilations that destroy the vortices them-differential operator containing a trapping potential, and
selves. Vortex evolutions are particularly complex in stronglyV{A) takes care of any nonlinear contribution. We assume
nonlinear media, such as the BECs, where the vortices caii€ trapping potential to be harmonic, thus=—3 (d%
interact with each other. Therefore, a fundamental questiort 8)2,)+(nXX2+ nyyz). To be specific, whenV(A)~|A|?A,
arises about whether stationary or quasistationary vorteshis equation models the propagation of a light beam guided
clusters or lattice15] made of vortices with equal and with in a Kerr nonlinear graded-index medium and the mean-field
opposite topological charges exist. To isolate the pure vortegvolution of a two-dimensional trapped BEC at zero tem-
features from the dynamics solely induced by the evolutiorperature(wheren, , are proportional to the trap frequencies
of the host wave packet, it is convenient to study wave fieldsn appropriate unijs Here we will consider only the sym-
confined by suitable potentials, as in weakly interactingmetric case; hence,=n,=2. For convenience, from now
trapped BECs. on we will split A(x,y;2)=F(x,y;2)V(X,y;z), taking the

In this paper we show that vortex clusters with multipolarhost packef as given by the fundamental mode of the trap-
global wave fronts nested in wave fields confined by trappinging potential, F(x,y;z) = exp(—x*—y?)exp(—2iz). In the

linear case, the functiov(x,y;z) carries all the essential
information about the solutions and, in particular, about vor-
*Permanent address: Institute of Atomic Physics, Bucharestex dynamics. Here we will consider the evolution of poly-
Romania. nomial initial data forV corresponding tgmulti)vortex so-
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FIG. 1. Evolution of a vortex quadrupole, constructed as the
product of four single-charge vortices. Upper row shows number of
vortices (n) as a function ofz for different values of the initial
quadrupole size(@ a=0.5, (b) a=1.1, and(c) a=1.2. Bottom FIG. 2. H-cluster “zoology.” Shown are several examples of
row shows intensity snapshots corresponding to points la#elBd  stationary vortex matrices and vortex arrays that can be constructed
andC in (C) Black-filled circles represent pOSi'[ive Vortices; white- (See text for detams Lines show zero Crossings of R@( (fu”
filled circles represent negative vortices. lines and Im(V) (dashedl Features are as in Fig. 1.

(©)

lutions of Eq.(1). Such solutions can be expressed as finitehat the interference between the constituent vortices of all
series .and, as will be clear later, all of them must be periodighe product clusters produces beatings between the normal
or stationary. modes of the system, rendering the clusters nonstationary.
Let us first consider the linedt\{A)=0] evolution of The key insight we put forward in this paper is that such
vortex clusters built as products of independent single- peatings are not associated to the intrinsic or local properties
charge vorticesV(x,y;z=0)=IIy_;[x—x+io(y—y)],  of the individual vortices, but to the very way the vortices
where ,yy) are the locations in the vortex cores in the areglobally linkedin the host wave packet. As an example,
transverse plane, angi,=*1. None of the above product et us consider the evolution of
vortex clusters is found to be dynamically stationary. On the
contrary, the number of vortices and their location is found to V(x,y;z=0)=x2+y?—a’+2ixy, 3
vary during evolution, so that the initial vortex structure is
destroyed. These results can be illustrated by examining thghich contains four vortices located at the same positions
evolution of the four-vortex clustel(z=0)=(x+a+iy)  and having the same charges as those of the vortex quadru-
X(x—a+iy)(x—iy—ia)(x—iy+ia), which contains two pole considered abosee Fig. 2 However, in this cluster
vortices with positive topological charge and two vorticesthe vortices are intimately linked to each other, rather than
with negative charge in a symmetrical geometry. This clustefndividually nested in the host. This fact manifests itself in
features a quadrupolar global wave front, as is revealed bihe global wave front of the cluster, which behaves as
calculating the gradient of the wave frodt far from the |V ®|~ cos(2p)/p+0O(1/p%), and thus features almost every-

cluster core, to obtaifV®|~1/p®, wherep is the polar where amonopolardecay. In this case, the vortex evolution
coordinate, similar to the corresponding electrostatic multiis given by

pole[19]. Substitution into Eq(1) yields
_ _ V(X,y;z)=(x>+y?—1/2+2ixy)e 42+ 1/2—a?, (4)
V(xy;2) =[(x*+y?)(x*+y?+2e"=2)]e *
1 _ an evolution when the cluster is constructed watk 1/y/2
+4ia’xye 47+ E(l—e“"z)z—a“. (2)  does become fully stationary.
The above four-vortex cluster is not an isolated case, but
] ) . . _rather an example of whole existing families of fully station-
One finds three different regimes of evolution, as shown inyry yortex structures made of globally linked vortices. In

Fig. 1: vortex drifts, vortex-pair annihilations, and revivals act the solutions of Eq1) with M(A)=0 have the form
take place, so that depending on the value of the geometrical

parametera, the total number of vortices), hosted in the % .

wave field during propagation can oscillate betwégd and  A(x,y:z)= CuH.u(xv/2)H 2)e XY 2ktl+l)z

8 [see Fig. 1)]; (ii) 4, 0, and gsee Fig. 1b)]: and (iii) 4 (x.y:2) KIE:O aH 2 H (7 V2)

and O[see Fig. 1c)]. Whenn=0, it is understood that all 6)
vortices have annihilated each other. Analogous evolutions

were found for octupoles and higher-order multipoles. OnlywhereH; are the Hermite polynomials. Therefore, the evo-
dipoles can be made quasistationary, but are made flippingtion of initial data of the form V(x,y;z=0)
when the corresponding vortex twins periodically flip their = =k—oCiHk(§)Hn_«(7) for any C,eC, where é=x./2
topological charges. Thus, the main conclusion reached iand =y+/2, is given by
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V<x,y;z>=e*2inzk§0cka@)Hn_k(m. (6)

On physical grounds, this simple mathematical result shows
that all the stationary clusters are made of globally linked

vortices. Equatior(6) allows us to build a variety of struc-
tures, to be termed Hermite, &t clusters, whose key fea- ‘
tures are discussed in what follows. '

Perhaps the simplest types ldfclusters are those with a

nxn matrix geometry, thus containing? vortices. These

clusters can be generated by using as initial data, for ex- FiG. 3. Stable evolution of initial data given by E¢®) for
ample, Vixn(X,y;z=0)=H.(&) +iH (7). In this function ~ UN=10. Upper row shows intensity plots; bottom row shows in-
the vortex charges alternate throughout the matrix and therference fringes. Spatial region spannefl-ist,4] <[ —4,4].

vortex locations are dictated by the zeros of the particular

Hermite polynomials involved. In general, these vortex ma-gimensional case isQU<10>—1C° (Ref. [21]).

trices are not regular, the distance between vortices varies \we have studied several particular examples to verify that
along the matrix. However, in the particular cases with  these structures indeed exist and are stable in the nonlinear
=2 andn=3, the matrix is regular. The=3 case is shown regime. We have taken as initial data several linear configu-
in Fig. 2a). Notice that a X2 matrix cluster can be rations, such as a single vortex, dipole systems, and the four-
generated either withV(x,y;z=0)=H(§) +iH(7) or  yortex cluster given by Eq(3), and evolved them folJN

with V(x,y;2=0)=H(&) + Ha(7) +iH1(§)H1(7). Actu- =10 (N=[|A|?dx is the wave function norjnusing a stan-
ally, this latter possibility generates the stationary four-vortexdard split-step integrator. It is found that although the back-
cluster discussed earligsee Fig. 20)]. ground performs oscillations and the vortex locations oscil-

One can also buildnx n(m+n) stationary vortex matri- |ate around their equilibrium positions, the vortex clusters
ces. A possible choice for the vortex function generatingremain stablésee Fig. 3 We have also searched for station-
such a vortex matrix is Vixa(X,y;z=0)=Hmn(§)  ary solutions of Eq(1), of the formA(x,y;t) =e™y(x,y).

+iH|m-n|(§)Hn(7). We show the &2 vortex matrix as an  To do so we have used a steepest descent method to mini-
example in Fig. ). In contrast to therX n matrices, in the  mjze the functional22]

general case the topological charges carried by the vortices

of the mXxXn matrices do not alternate sign throughout the

matrix. An important subclass of thexn vortex matrices f Y* (= A=N+r2+U[g]?) gdx

are themx1 cases, to be termed a®rtex arrays They F(y)= , @)
consist inm collinearly displaced vortices of the same topo- j || 2dx

logical charge. Figures(@) and Ze) show illustrative ex-

amples. The simplest array is the vortex twin shown in Fig.
2(d). A pair of identical vortices that, contrary to the vortex whose minima(except fori/=0) coincide with the station-
dipole that either undergoes periodic annihilations and revivary solutions of Eq(1) for a given value oh. For instance,
als or charge flip-flops, can be made fully stationary.

The nXn matrices are either chargeless for evenor 0.25
carry a single net charge for odd valuesmfwhile them
X 1 arrays carry a total topological chargemafIn any case,
the wave front of all theH clusters is foundo feature a
monopolardecay (- 1/p) almost everywhere.

More complexH clusters also exist, and a full classifica-
tion of all the possibilities falls beyond the scope of this 2
paper. However, an example of one of such ex#tidusters I"M
is displayed in Fig. &) that corresponds to the cluster built

0.15[

with V(x,y;z=0)=Hs(7) +i[H3(&) + Hi(n)Hx(5)]. A 0.05;
rich variety of possibilities contained in E@6) is clearly
apparent. 0 ,
An interesting issue is the existence and stability of vortex -8 -4 0 4 8
clusters in the presence of nonlinear cubic interactions, such x

as those appearing in the propagation of beams in Kerr me- g 4. Linear four-vortex clustdigq. (3)] vs its nonlinear sta-
dia or in the dynamics of BECs. To ease the comparison Wlt|ﬁonary version folJ = 100, A = 8. () Plots of|#(x,y=0)|? for the
BEC literature, we choose now,=n,=1/2 and M{(A) Jinear (dashed ling and nonlinearsolid line) cases(b,0) Surface
=U|AJA (Ref.[20]). In this context, the evolution variable plots of|#(x,y)|? for (b) the linear andc) nonlinear situations. The

is denoted byt instead ofz. With this choice of parameters, vortex locations and topological charges are indicated by plus and
the range olJ values experimentally accessible for the two- minus signs.
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taking the linear four-vortex cluster as initial data for the
minimization process and setting=8.0 andU =100, we
found a stationary four-vortex cluster solutigsee Fig. 4
with norm N= [||?dx=1.6005 (thus the productUN
=160 which lies into the fully nonlinear regimeWe have
verified that this solution is robust under time evolution
when small perturbations are added. These evidences show
that the existence dfl clusters in a BEC should be experi-
mentally accessible, at least from the dynamical point of (@) ()
view.

To conclude, we stress that the constituent vortices of thgl0
H cluster areglobally linked rather than products of inde-

pendent vortices. Following this idea, it is possible to genery g quantum systems based on topological light and matter

ate a variety of additional novel structures with fascinatingW(,Jwes The major challenge is the demonstration of the gen-
properties. A good example is the circular vortex necklacey ation of the clusters by suitable computer-generated holo-

generated at the intersection between the cixéle y?>—a? rams [23] in optics and bhase-imprinting techniques. in
=0, where ReY)=0, and the linesy +tan(2kw/n)x=0, %ECS[[24].] P P P g a

ke N, where Im{/)=0. Those are quasistationary, purely

flipping clusters made af vortices(see Fig. 5, a feature so This work was supported by the Generalitat de Catalunya
far only known to occur with vortex dipoles. Once again, theand Ministerio de Ciencia y Tecnolayunder Grants Nos.
vortices forming the necklace are intimately linked and doTIC2000-1010 and BFM2000-0521. L.-C. Crasovan ac-
not exhibit an-polar wave front. The exploitation of such knowledges NATO support and thanks M. Damian and O.
intrinsic linking might open new opportunities in classical Halmaghi for helpful discussions.

FIG. 5. Evolution of a flippingn=8 circular vortex necklace.
rtex patterns ata) z=0 and(b) z=3#/16.
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